Все о тюнинге авто

Автономные атомные электростанции. Как устроена атомная электростанция. Проекты будущих электростанций

Атомная электростанция - комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.

На АЭС происходит три взаимных преобразования форм энергии

Ядерная энергия

переходит в тепловую

Тепловая энергия

переходит в механическую

Механическая энергия

преобразуется в электрическую

1. Ядерная энергия переходит в тепловую

Основой станции является реактор - конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.

ПАРОГЕНЕРАТОР

2. Тепловая энергия переходит в механическую

Тепло отводится из активной зоны реактора теплоносителем - жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.

ЭЛЕКТРОГЕНЕРАТОР

3. Механическая энергия преобразуется в электрическую

Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.


Из чего состоит АЭС?

Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).


Основным элементом реактора является активная зона(1) . Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.

Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.

На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.

Какие бывают АЭС?

В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

В настоящее время в России действует 5 АЭС с двухконтурными реакторами

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.

Как работает, например, гидроэлектростанция? Здесь все просто. Строится плотина, создается большой водоем, потоки воды под давлением вращают вал генератора, который вырабатывает электроэнергию. Как устроены ветряные электростанции? Тут все намного проще! Ветер крутит большие лопасти, которые вращают вал генератора, получается электричество. А какой принцип работы атомной электростанции? Оказывается, большинство людей вообще не понимают, как получают электроэнергию с помощью атомных реакторов. Для многих, это будто некая магия, что-то такое происходит в атомном реакторе, откуда получается электрический ток.

Считаю, что это несправедливо, люди должны знать, как работают атомные электростанции, потому что все намного проще и понятнее чем может показаться. О принципах работы атомной энергетики расскажу на примере Нововоронежской АЭС.


Итак, атомная станция со стороны выглядит как многие промышленные предприятия с техническими корпусами, кранами и трубами. Заметное отличие заключается в больших градирнях, из которых выходят большие клубы пара. Хотя градирни есть и на обычных теплоэлектростанциях, так что АЭС легко можно не опознать.

Переходим к самой известной по фильмам и фотографиям части АЭС — щиту управления.
Это блочный щит управления 4-м энергоблоком Нововоронежской атомной станции, запущенным в 1972 году. Здесь используется реактор ВВЭР-440 мощностью 400 МВт.

Нововоронежская АЭС — одна из первых атомных электростанций СССР и первая в мире атомная станция с водо-водяным энергетическим реактором. АЭС снабжает около 20 предприятий и более 2 миллионов жителей Центрально-Черноземного региона, а также на 85% обеспечивает Воронежскую область электричеством.

Всем известная «круглая штука с ромбиками» является разрезом активной зоны реактора. Красным показаны регулирующие стержни, белым — тепловыделяющие сборки. Если коротко и грубо, то атомный реактор представляет из себя большой вертикальный цилиндр, внутри которого располагаются стержни из ядерного топлива и контролирующие стержни.

Энергоблоки 3 и 4 были построены в начале 1970-х годов и должны были закончить работу еще в начале 2000-х годов, но позже срок их эксплуатации продлили. С прошлого года проводится активная модернизация.

Всего за историю Нововоронежской станции было 6 энергоблоков, первый из которых пущен в 1964 году, а шестой — в 2016 году. Седьмой энергоблок сейчас строится, а первый и второй уже выведены из работы.

Самая верхняя часть реактора, крышка напоминает большой колокол, а сами стержни находятся глубоко внизу. Это реакторное отделение 3-го и 4-го энергоблоков, а подобная смотровая площадка существует только на Нововоронежской АЭС. Да, именно так, можно сказать, выглядит снаружи атомный реактор.
Немного позади крышки располагается устройство для замены стержней, которое подъезжает сверху, когда крышку открывают, и производит работу внутри.

Блочный щит управления 5-м энергоблоком, построенным в 1980 году. Здесь используется реактор ВВЭР-1000 мощностью 1000 МВт.

Энергоблок должны были вывести из работы в 2010 году, но позже срок продлили.
С 1995 года Нововоронежская АЭС осуществляет модернизацию энергоблоков для приведения их в соответствие с современными стандартами безопасности.

Поскольку энергоблок и щит управления более новые, то и разрез активной зоны реактора тоже отображается уже не в аналоговом виде, а на мониторе компьютера в режиме реального времени. Можно наблюдать температуру и многие другие параметры.

Самая главная кнопка, которая полностью отключает реактор при возникновении самых страшных аварийных ситуаций. Пожелаем сотрудникам АЭС, чтобы подобных аварий никогда не происходило, а эта кнопка всегда оставалась запечатанной.

Во многих местах и помещениях станции находятся специальные устройства, измеряющие уровень радиации — счетчики Гейгера или дозиметры.

Пятый энергоблок Нововоронежской АЭС снаружи выглядит как цилиндр. Внутри необычного здания находится сам атомный реактор, окруженный специальной защитной цилиндрической оболочкой из железобетона. После ремонта и модернизации в 2011 году он снова введен в эксплуатацию, его мощность 1000 МВт.

А теперь главный вопрос: зачем вообще нужен реактор, как из всего этого получается электричество?
В реальности все оказывается не так «магически», как вероятно хотелось бы. Атомный реактор является фактически большим кипятильником, который нагревает воду.

После нагревания вода направляется к другому замкнутому контуру с водой, которая уже превращается в пар. Этот пар крутит большую турбину, приводящую в движение генератор, который вырабатывает электроэнергию.

В общем, все просто: реактор нагревает, вода/пар крутит генератор, получается электричество.
Машинный зал 5-го энергоблока.

Нагретую воду необходимо дальше куда-то направить и охладить, для этого придумали целые охладительные башни — градирни. Вода закачивается насосом наверх, а потом падает вниз, дробясь на мелкие капельки в оросителе. Снизу подается поток воздуха, который испаряет часть воды, а часть просто охлаждается и падает вниз.
Это градирни 3-го и 4-го энергоблоков высотой 95 метров.

Комплектное распределительное устройство предназначено для приема, распределения и передачи электричества. Грубо говоря, большой трансформатор. Внутри специальных труб находятся линии электропередач, все надежно и безопасно.
Это КРУЭ шестого энергоблока Нововоронежской АЭС.

Центральный щит управления 6-го энергоблока, который на данный момент является самым мощным атомной энергетике России — 1200 МВт. Построен по технологиям безопасности, ставшим актуальными после аварии на Фукусиме. Тип атомного реактора ВВЭР-1200.

Шестой энергоблок с улицы выглядит не так инфернально как цилиндр пятого, но по верхней части с трубами можно узнать. В августе 2016 года энергоблок был включен в сеть и выдал первые 240 МВт в энергосистему. На данный момент, это самый высокотехнологичный энергоблок в России, соответствующий самым современным требованиям надежности и безопасности.

Брызгальные бассейны 6-го блока, которые нужны для охлаждения систем потребления реактора. На заднем плане здание шестого энергоблока, градирни 6-го и строящегося 7-го энергоблока, и сама стройка.

Седьмой энергоблок будет близнецом шестого, завершение строительства намечено на 2018 год. Энергоблок будет устойчив к землетрясениям, ураганам, наводнениям, взрывам, даже падению самолета. Типа реактора ВВЭР-1200.

Турбинный зал 6-го энергоблока.

Срок службы основного оборудования блока теперь составляет 60 лет, а не 30 лет, как было на старых энергоблоках.

Градирни 6-го и 7-го энергоблоков намного больше и выше старых, их высота 171 метр.

Теперь вместо двух градирней на энергоблок используется одна, но большего размера. Это позволило уменьшить площадь самой атомной станции, сократить расходы материалов и средств.

Пункт управления 6-го энергоблока. В полную промышленную эксплуатацию энергоблок запланировано принять в конце 2016 года после проведения различных испытаний.

Большое спасибо лично

Производство электроэнергии с использованием цепной ядерной реакции в Советском Союзе впервые произошло на Обнинской АЭС. По сравнению с сегодняшними гигантами первая атомная электростанция имела всего лишь 5 МВт мощности, а самая большая в мире на сегодняшний день действующая АЭС "Касивадзаки-Карива" (Япония) - 8212 МВт.

Обнинская АЭС: от пуска до музея

Советские ученые во главе с И. В. Курчатовым по окончании военных программ сразу приступили к созданию атомного реактора с целью использования тепловой энергии для преобразования ее в электричество. Первая атомная электростанция была разработана ими в кратчайшие сроки, и в 1954 году состоялся пуск промышленного ядерного реактора.

Высвобождение потенциала, как промышленного, так и профессионального, после создания и испытания ядерного вооружения позволило И. В. Курчатову заняться порученной ему проблемой получения электричества путем освоения тепловыделений при протекании управляемой ядерной реакции. Технические решения по созданию ядерного реактора были освоены еще при пуске самого первого опытного уран-графитового реактора Ф-1 в 1946 году. На нем была проведена первая цепная ядерная реакция, подтверждены практически все теоретические наработки за последнее время.

Для промышленного реактора нужно было найти конструктивные решения, связанные с непрерывной работой установки, съемом тепла и подачи его на генератор, циркуляцией теплоносителя и защитой его от радиоактивного загрязнения.

Коллективом лаборатории № 2, возглавляемой И. В. Курчатовым, совместно с НИИхиммаш под руководством Н. А. Доллежаля были проработаны все нюансы сооружения. Физику Е. Л. Фейнбергу была поручена теоретическая разработка процесса.

Пуск реактора (достижение критических параметров) был произведен 9 мая 1954 года, 26 июня этого же года атомная электростанция подключена в сеть, а уже в декабре выведена на проектную производительность.

После того как Обнинская АЭС безаварийно проработала как промышленная электростанция почти 48 лет, она была остановлена в апреле 2002 года. В сентябре этого же года закончена выгрузка ядерного топлива.

Еще во время работы на АЭС приезжало множество экскурсий, станция работала как учебный класс для будущих ядерщиков. Сегодня на ее базе организован мемориальный музей атомной энергетики.

Первая зарубежная АЭС

Атомные электростанции по примеру Обнинской не сразу, но начали создаваться за рубежом. В США решение о строительстве своей атомной электростанции было принято лишь в сентябре 1954 года, и только в 1958 году состоялся пуск АЭС "Шиппингпорт" в Пенсильвании. Мощность атомной электростанции "Шиппингпорт" составила 68 МВт. Зарубежные эксперты называют ее первой коммерческой атомной электростанцией. Строительство атомных электростанций достаточно дорого, АЭС обошлась казне США в 72,5 млн долларов.

Через 24 года, в 1982-м, станция была остановлена, к 1985 году было выгружено топливо и начат демонтаж этого огромного сооружения весом 956 тонн для последующего захоронения.

Предпосылки создания мирного атома

После открытия деления ядер урана немецкими учеными Отто Ганом и Фрицем Штрассманом в 1938 году начали проводиться исследования цепных реакций.

И. В. Курчатов, подталкиваемый А. Б. Иоффе, совместно с Ю. Б. Харитоном составили записку в Президиум Академии наук о ядерной проблематике и важности работ в этом направлении. И. В. Курчатов работал в это время в ЛФТИ (Ленинградском физико-техническом институте), возглавляемом А. Б. Иоффе, над проблемами физики ядра.

В ноябре 1938 года по результатам изучения проблемы и после выступления И. В. Курчатова на Пленуме АН (Академии наук) была составлена записка в Президиум АН об организации работ в СССР по физике атомного ядра. В ней прослеживается обоснование обобщения всех разрозненных лабораторий и институтов в СССР, принадлежащих разным министерствам и ведомствам, занимающихся, по сути, одной проблематикой.

Приостановка работ по физике ядра

Часть из этих организационных работ удалось сделать еще до ВОВ, но основные подвижки начали происходить только с 1943 года, когда И. В. Курчатову было предложно возглавить атомный проект.

После 1 сентября 1939 года начал постепенно образовываться своеобразный вакуум вокруг СССР. Это не тотчас почувствовали ученые, хотя агенты советской разведки сразу стали предупреждать о засекречивании форсирования работ по изучению ядерных реакций в Германии и Великобритании.

Великая Отечественная война немедленно внесла коррективы в работу всех ученых страны, в том числе и физиков-ядерщиков. Уже в июле 1941 года ЛФТИ был эвакуирован в Казань. И. В. Курчатов стал заниматься проблемой разминирования морских судов (защиты от морских мин). За работы по этой тематике в условиях военного времени (три месяца на судах в Севастополе до ноября 1941-го, когда город был почти полностью в осаде), за организацию в Поти (Грузия) службы размагничивания он был награжден Сталинской премией.

После тяжелого простудного заболевания по приезде в Казань только к концу 1942 года И. В. Курчатов смог вернуться к теме ядерной реакции.

Атомный проект под руководством И. В. Курчатова

В сентябре 1942 года И. В. Курчатову было всего 39 лет, по возрастным меркам науки он был молодым ученым рядом с Иоффе и Капицей. Именно в это время состоялось назначение Игоря Васильевича на пост руководителя проекта. Все атомные электростанции России и плутониевые реакторы этого периода создавались в рамках атомного проекта, которым до 1960 года руководил Курчатов.

С точки зрения сегодняшнего дня невозможно представить, что именно тогда, когда 60% промышленности было разрушено на оккупированных территориях, когда основное население страны работало для фронта, руководством СССР было принято решение, предопределившее развитие ядерной энергетики в будущем.

После оценки донесений разведки о положении дел с работами по физике атомного ядра в Германии, Великобритании, США Курчатову стал ясен размах отставания. Он начал собирать по стране и действующим фронтам ученых, которых можно было задействовать в вопросах создания ядерного потенциала.

Нехватка урана, графита, тяжелой воды, отсутствие циклотрона не остановили ученого. Работы, как теоретические, так и практические, возобновились в Москве. Высокий уровень секретности был определен ГКО (Государственным комитетом обороны). Для наработки оружейного плутония был построен реактор («котел» по терминологии самого Курчатова). Велись работы по обогащению урана.

Отставание от США в период с 1942 по 1949 год

2 сентября 1942 года в США, на первом в мире ядерном реакторе, была осуществлена управляемая ядерная реакция. В СССР к этому времени, кроме теоретических наработок ученых и данных разведки, не было практически ничего.

Становилось ясно, что догнать США в короткое время страна не сможет. Подготовить (сберечь) кадры, создать предпосылки к быстрому освоению процессов по обогащению урана, созданию ядерного реактора по производству оружейного плутония, восстановить работу заводов по производству чистого графита - это задачи, которые нужно было сделать за военное и послевоенное время.

Протекание ядерной реакции связано с выделением колоссального количества тепловой энергии. Ученые США - первые создатели атомной бомбы использовали это как дополнительный поражающий эффект при взрыве.

Атомные электростанции мира

На сегодняшний день ядерная энергетика хоть и вырабатывает колоссальное количество электроэнергии, но распространена в ограниченном количестве стран. Связано это с огромными капиталовложениями при возведении АЭС, начиная с геологоразведки, строительства, создания защиты и заканчивая обучением сотрудников. Окупаемость может произойти через десятки лет при условии постоянной, непрекращающейся работы станции.

Целесообразность строительства АЭС определяется, как правило, правительствами стран (естественно, после рассмотрения различных вариантов). В условиях развития промышленного потенциала, при отсутствии собственных внутренних запасов энергоносителей в больших количествах или их дороговизны предпочтение отдается строительству АЭС.

К концу 2014 года атомные реакторы работали в 31 стране мира. Строительство атомных электростанций начато в Белоруссии и ОАЭ.

№ п/п

Страна

Кол-во работающих АЭС

Кол-во работающих реакторов

Генерируемая мощность

Аргентина

Бразилия

Болгария

Великобритания

Германия

Нидерланды

Пакистан

Словакия

Словения

Финляндия

Швейцария

Южная Корея

Атомные электростанции России

На сегодняшний день в РФ работают десять атомных электростанций.

Название АЭС

Количество работающих блоков

Тип реакторов

Установленная мощность, МВт

Балаковская

Белоярская

БН-600, БН-800

Билибинская

Калининская

Кольская

Ленинградская

Нововоронежская

ВВЭР-440, ВВЭР-1000

Ростовская

ВВЭР-1000/320

Смоленская

Сегодня атомные электростанции России входят в Госкорпорацию «Росатом», объединившую все структурные подразделения отрасли от добычи-обогащения урана и производства ядерного топлива до эксплуатации и сооружения атомных электростанций. По генерируемой атомными электростанциями мощности Россия находится на втором месте в Европе после Франции.

Атомная энергетика в Украине

Атомные электростанции Украины построены во времена Советского Союза. Совокупная установленная мощность украинских АЭС сравнима с российскими.

Название АЭС

Количество работающих блоков

Тип реакторов

Установленная мощность, МВт

Запорожская

Ровенская

ВВЭР-440,ВВЭР-1000

Хмельницкая

Южно-Украинская

До распада СССР атомная энергетика Украины была интегрирована в единую отрасль. В постсоветский период до событий 2014 года на Украине работали промышленные предприятия, выпускающие комплектующие и для российских АЭС. В связи с разрывом промышленных отношений между РФ и Украиной задержаны запланированные на 2014 и 2015 годы пуски энергоблоков, строящихся в России.

Атомные электростанции Украины работают на ТВЭЛах (тепловыделяющих элементах с ядерным топливом, где происходит реакция деления ядер), изготовляющихся в РФ. Желание Украины перейти на американское топливо чуть не привело в 2012 году к аварии на Южно-Украинской АЭС.

К 2015 году госконцерн «Ядерное топливо», в состав которого входит Восточный горно-обогатительный комбинат (добыча урановой руды), пока не смог организовать решение вопроса о производстве собственных ТВЭЛов.

Перспективы атомной энергетики

После 1986 года, когда произошла авария на Чернобыльской АЭС, во многих странах были остановлены атомные электростанции. Повышение уровня безопасности вывело атомную энергетику из состояния стагнации. До 2011 года, когда произошла авария на японской АЭС "Фукусима-1" в результате цунами, атомная энергетика развивалась стабильно.

На сегодняшний день постоянные (как мелкие, так и крупные) аварии на атомных электростанциях будут тормозить принятие решений о строительстве или расконсервации установок. Отношение населения Земли к проблеме получения электроэнергии путем ядерной реакции можно определить как настороженно-пессимистичное.

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Как устроена АЭС?

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.

Что такое атомная электростанция?

Атомная электростанция или ядерная электростанция является тепловой электростанцией, в которой источником тепла является ядерный реактор. Обычно во всех традиционных тепловых электростанциях тепло используется для получения пара, который приводит в действие паровую турбину, соединенную с электрогенератором, который вырабатывает электричество. По состоянию на 23 апреля 2014 года МАГАТЭ отчиталось об эксплуатации 435 энергетических ядерных реакторов в 31 стране мира. Атомные электростанции, как правило, считаются станциями базисной нагрузки, так как стоимость топлива составляет небольшую часть себестоимости продукции. Затраты на их эксплуатацию, техническое обслуживание и топливо, наряду с гидроэлектростанциями, находятся на нижней границе диапазона, что делает их пригодными для роли поставщиков электроэнергии базовой нагрузки. Однако, довольно неустойчивыми являются затраты на утилизацию отработанного топлива.

История атомной промышленности

Впервые в истории с помощью ядерного реактора выработали электроэнергию 3 сентября 1948 года в Графитовом Реакторе X-10 в г. Ок-Ридж, штат Теннесси, Соединенные Штаты Америки. Этот реактор был прототипом первой атомной электростанции и произвел достаточно электроэнергии для питания лампы накаливания. Второй более крупный эксперимент был проведен 20 декабря 1951 года на опытной станции EBR-I вблизи г. Арко, штат Айдахо в Соединенных Штатах Америки. 27 июня 1954 года в советском городе Обнинск начала свою работу первая в мире атомная электростанция для выработки электроэнергии для энергосистемы. Первая в мире полномасштабная электростанция Колдер-Холл была запущена в Англии 17 октября 1956 года. Первая в мире полномасштабная электростанция Шиппингпорт, предназначенная исключительно для производства электроэнергии (Колдер Холл была также предназначена для производства плутония), была подключена к сети 18 декабря 1957 года в Соединенных Штатах Америки.

Как работает атомная электростанция

Преобразование в электрическую энергию происходит косвенно, как в обычных тепловых электростанциях. Деление ядра атома в ядерном реакторе нагревает теплоноситель реактора. Теплоносителем может быть вода или газ, или даже жидкий металл в зависимости от типа реактора. Теплоноситель реактора затем переходит в парогенератор и нагревает воду для получения пара. Пар под давлением затем, как правило, подают в многоступенчатую паровую турбину. После того, как паровая турбина расширилась и частично конденсировала пар оставшийся пар конденсируется в конденсаторе. Конденсатор представляет собой теплообменник, который соединен со вторичным контуром охлаждения таким, как река или градирня. Вода затем закачивается обратно в парогенератор и цикл начинается снова. Пароводяной цикл соответствует циклу Рэнкина.

Ядерный реактор АЭС

Ядерный реактор является сердцем станции. В ее центральной части в активной зоне реактора в результате управляемого деления атомного ядра генерируется тепло. Это тепло нагревает теплоноситель, когда он прокачивается через реактор и, таким образом, выводит энергию из реактора. Тепло от ядерного деления используется для производства пара, который проходит через турбины, которые в свою очередь питают электрические генераторы.

В ядерных реакторах в качестве топлива цепной реакции обычно используют уран. Уран - это очень тяжелый металл, залежи которого в изобилии находится в морской воде в большинстве скальных пород на Земле. Встречающиеся в природе уран встречается в виде двух различных изотопов: уран-238 (U-238), который составляет 99,3% природного урана, и уран-235 (U-235), на который приходится около 0,7% урана в природе. Изотопы представляют собой атомы одного и того же элемента с разным количеством нейтронов. Таким образом, U-238 имеет 146 нейтронов, а U-235 имеет 143 нейтрона. Различные изотопы имеют разные модели поведения. Например, U-235 является делящимся - это означает, что он легко расщепляется и выделяет много энергии, что делает его идеальным для ядерной энергетики. С другой стороны, U-238 не имеет такого свойства, несмотря на то, что это тот же элемент. Различные изотопы также имеют различные периоды полураспада. Период полураспада - это количество времени, необходимое для разложения половины образца радиоактивного элемента. U-238 имеет более длительный период полураспада, чем U-235, поэтому для его разложения требуется больше времени. Это также означает, что U-238 менее радиоактивен, чем U-235.

Так как ядерное деление создает радиоактивность, активная зона реактора окружена защитным экраном. Эта оболочка поглощает излучение и предотвращает выброс радиоактивного материала в окружающую среду. Кроме того, многие реакторы оборудованы бетонным куполом для защиты реактора как от внутренних аварий, так и от внешних воздействий.

Паровая турбина АЭС

Целью паровой турбины является преобразование тепла, содержащегося в паре в механическую энергию. Машинный зал с паровой турбиной, как правило, конструктивно отделен от здания главного ядерного реактора. Здания машинного зала и ядерного реактора расположены так, чтобы при взрыве турбины во время эксплуатации железные обломки не долетели до реактора.

В случае ядерного реактора, охлаждаемого водой под давлением, паровая турбина отделена от ядерной системы. Для обнаружения утечки в парогенераторе и таким образом попадания радиоактивной воды в первый контур устанавливают радиометр, который отслеживает пар на выходе из парогенератора. В отличие от этого, в реакторах с кипящей водой радиоактивная вода проходит через паровую турбину, так что турбина является частью рентгенологически контролируемой зоны АЭС.

Генератор АЭС

Генератор преобразует механическую энергию турбины в электрическую энергию. Используются низковольтные синхронные генераторы переменного тока высокой номинальной мощности.

Система охлаждения АЭС

Система охлаждения отводит тепло от активной зоны реактора и транспортирует его в другой район станции, где тепловая энергия может быть использована для производства электроэнергии или выполнения другой полезной работы. Как правило, горячий теплоноситель используется в качестве источника тепла для котла, а пар под давлением из котла приводит в движение одну или несколько паровых турбин электрических генераторов.

Предохранительные клапаны АЭС

В случае возникновения аварийной ситуации, могут быть использованы предохранительные клапаны для предотвращения разрыва труб или взрыва реактора. Клапаны спроектированы таким образом, чтобы они могли определить малейшее увеличение давления всех подаваемых энергоносителей. В случае реактора с кипящей водой, пар направляется в камеру понижения давления и конденсируется там. Камеры в теплообменнике соединены с промежуточным контуром охлаждения.

Насос питательной воды АЭС

Уровень воды в парогенераторе и ядерном реакторе контролируется с помощью системы питательной воды. Насос питательной воды имеет задачу забора воды из системы очистки конденсата, увеличивая давление и направляя ее в парогенераторы (в случае реактора с водой под давлением) либо непосредственно в реактор (для реакторов с кипящей водой).

Аварийный источник питания АЭС

Большинство атомных электростанций нуждаются в двух различных источниках питания, а именно во внеплощадочных трансформаторах собственных нужд питающих станций, которые достаточно отделены в распределительной подстанции и могут получать питание от нескольких линий электропередач. Кроме того, на некоторых атомных электростанциях турбогенератор может питать собственные нужды электростанции во время работы станции с помощью трансформаторов собственных нужд, которые отпускают электроэнергию с шин генератора до того, как она достигнет повышающего трансформатора (на таких электростанциях также есть трансформаторы собственных нужд электростанции, которые получают электроэнергию от внешних источников питания непосредственно из распределительной подстанции). Даже с двумя источниками резервного питания возможна полная электроснабжения от внешних источников. Атомные электростанции оснащены аварийным источником питания.

Специалисты на атомной электростанции

  • Инженеры-ядерщики
  • Операторы ядерного реактора
  • Работники службы дозиметрии
  • Персонал группы аварийного реагирования
  • Постоянные инспекторы Комиссии по ядерному регулированию

В Соединенных Штатах Америки и ​​Канаде работники электростанции, за исключением руководства, квалифицированного персонала (например, инженеров) и сотрудников службы безопасности, могут быть членами либо Международного Профсоюза Работников Электротехнической Промышленности (IBEW) или Профсоюза Подсобных Рабочих Америки (UWUA), или одного из различных профсоюзов или организаций работников, представляющих интересы машинистов, рабочих, котельщиков, монтажников, металлистов и т.д.

Затраты на АЭС

Экономика новых атомных электростанций является спорным вопросом, и многомиллиардные инвестиции зависят от выбора источника энергии. Атомные электростанции, как правило, имеют высокие капитальные затраты, но низкие прямые затраты на топливо, связанные с затратами на добычу, обработку, использование топлива и интернализированными затратами на хранение отработанного топлива. Таким образом, сравнение с другими методами выработки электроэнергии сильно зависит от предположений о сроках строительства и финансировании капитальных вложений для атомных станций. В соответствии с Законом Прайса-Андерсона в США смета затрат учитывает расходы на вывод электростанции из эксплуатации и хранение или переработку ядерных отходов. В настоящее время разрабатываются реакторы четвертого поколения с перспективой того, что все отработанное ядерное топливо ("ядерные отходы") потенциально может быть переработано с использованием будущих реакторов, чтобы полностью закрыть ядерный топливный цикл. В настоящее время, однако, не существует никакой эффективной объемной утилизации отходов от АЭС, и метод внутриплощадочного временного хранения все еще применяется почти на всех электростанциях из-за проблем со строительством постоянных хранилищ отходов. Только Финляндия имеет планы по строительству постоянных хранилищ, поэтому в мировом масштабе долгосрочные затраты на хранение отходов являются неопределенными.

С другой стороны, затраты на строительство или капитальные затраты в сторону мер по смягчению глобального потепления, таких как налог на выбросы углерода или торговля выбросами углекислого газа, все более благоприятствуют экономике ядерной энергетики. Есть надежда на достижение большей эффективности за счет более усовершенствованных конструкций реакторов. Обещают, что расход топлива Реакторов Третьего Поколения будет по крайней мере на 17% меньше и они будут иметь более низкие капитальные затраты, в то время как футуристические Реакторы Четвертого Поколения обещают на 10000-30000% большую эффективность использования топлива и ликвидацию ядерных отходов.

В Восточной Европе ряд давних проектов пытается найти финансирование, в частности Белене в Болгарии и дополнительные реакторы на Чернаводэ в Румынии, а некоторые потенциальные спонсоры "сошли со станции". Доступность дешевого газа и относительная надежность его будущих поставок также представляет собой серьезную проблему для ядерных проектов.

Анализируя экономику ядерной энергетики необходимо принимать во внимание, кто понесет риски, связанные неопределенностью будущего. На сегодняшний день все действующие атомные электростанции были построены государственными или регулируемыми государством коммунальными монополиями, где многие из рисков, связанных со строительными затратами, эксплуатационными характеристиками, ценами на топливо и другими факторами, несли потребители, а не поставщики. Многие страны уже либерализовали рынок электроэнергии, где эти риски, а также риск появления более дешевых конкурентов до момента окупаемости капитальных расходов, ложатся на плечи поставщиков и операторов станций, а не на потребителей, что приводит к существенному изменению оценки экономики новых атомных электростанций.

В связи с аварией на АЭС Фукусима I в 2011 году, вероятно, возрастут расходы для уже работающих и новых атомных станций из-за повышенных требований к хранению отработанного топлива на территории АЭС и повышенных проектных угроз. Однако многие проекты такие, как строящаяся в настоящее время AP1000, используют пассивные системы охлаждения для ядерной безопасности, в отличие от Фукусима I, которая нуждается активной системе охлаждения, а это в значительной степени уменьшает необходимость тратить больше средств на избыточное резервное оборудование для обеспечения безопасности.

Безопасность АЭС

В своей книге "Нормальные аварии" Чарльз Перроу говорит, что многочисленные и неожиданные сбои встроены в сложные и плотно связанные системы ядерных реакторов. Такие аварии неизбежны и их нельзя предотвратить. Междисциплинарная команда из Массачусетского технологического института (MIT) подсчитала, что с учетом ожидаемого роста ядерной энергетики в период с 2005 по 2055 годы можно ожидать, по крайней мере, четыре серьезные ядерные аварии. Однако исследование MIT не принимает во внимание улучшения в безопасности с 1970 года. С 1970 года до настоящего времени в мире произошло пять серьезных аварий (повреждения активной зоны): одна на АЭС Три-Майл-Айленд в 1979 году, одна на Чернобыльской АЭС в 1986 году и три на АЭС Фукусима-1 в 2011 году, что соответствует началу эксплуатации Реакторов Второго Поколения. В среднем во всем мире каждые восемь лет происходит одна серьезная авария.

Современные конструкции ядерных реакторов были многократно усовершенствованы с точки зрения безопасности со времени использования ядерных реакторов первого поколения. Атомные электростанции не могут взорваться как ядерная бомба, так как топливо для урановых реакторов не обогащается достаточно, а для ядерного оружия требуется прецизионное взрывчатое вещество, чтобы заставить топливо в достаточно малом объеме дойти до сверхкритического состояния. Большинство реакторов требуют непрерывного контроля температуры, чтобы предотвратить расплавление ядра, что и происходило несколько раз из-за аварии или стихийного бедствия, высвобождая радиацию и делая окружающую среду непригодной для жизни. Электростанции должны быть защищены от кражи ядерного материала (например, для изготовления "грязной" ядерной бомбы) и от нападения военных самолетов (что имело место) или ракет противника, или захваченных террористами самолетов.

Споры вокруг атомной энергетики

Дискуссии о ядерной энергетике ведутся по поводу спорного вопроса, который возник при внедрении и использовании реакторов ядерного деления для выработки электроэнергии из ядерного топлива для гражданских целей. Дискуссия о ядерной энергетике достигла своего пика в 1970-х и 1980-х годах, когда она "достигла беспрецедентной интенсивности в истории технологических противоречий» в некоторых странах.

Сторонники утверждают, что ядерная энергетика является устойчивым источником энергии, который уменьшает выбросы углекислого газа и может повысить энергетическую безопасность, если его использование вытесняет зависимость от импортного топлива. Сторонники продвигают идею, что ядерная энергетика практически почти не загрязняет воздух, в отличие от главной жизнеспособной альтернативы - ископаемого топлива. Сторонники также полагают, что ядерная энергетика является единственным реальным выходом для достижения энергетической независимости большинства Западных стран. Они подчеркивают, что риски хранения отходов невелики и могут быть дополнительно снижены за счет использования новейших технологий в новых реакторах, а также отчеты по эксплуатационной безопасности в Западном мире свидетельствуют об отличном состоянии АЭС по сравнению с другими основными видами электростанцций.

Противники утверждают, что ядерная энергетика создает много угроз для людей и окружающей среды, а также, что затраты не оправдывают выгоды. Угрозы включают в себя риски для здоровья и экологический ущерб от добычи, переработки и транспортировки урана, риск распространения ядерного оружия или саботажа, а также нерешенная проблема радиоактивных ядерных отходов. Другой экологической проблемой является сброс горячей воды в море. Горячая вода изменяет условия окружающей среды для морской флоры и фауны. Они также утверждают, что сами реакторы чрезвычайно сложные машины, где многие процессы могут и происходят не по плану, что уже приводило к многим серьезным ядерным авариям. Критики не верят, что эти риски могут быть снижены за счет новых технологий. Они утверждают, что, если рассматривать все энергоемкие этапы цепочки использования ядерного топлива, от добычи урана до вывода из эксплуатации ядерных объектов, то ядерная энергетика не является источником электроэнергии с низким содержанием углерода. Те страны, которые не имеют урановых рудников, не могут добиться энергетической независимости посредством существующих ядерно-энергетических технологий. Фактические затраты на строительство часто превышают смету и расходы на хранение отработанного топлива не имеют четких временных рамок.

Переработка ядерного топлива АЭС

Технология переработки ядерного топлива была разработана для химического разделения и восстановления делящегося плутония из облученного ядерного топлива. Переработка служит нескольким целям, относительное значение которых изменилось с течением времени. Первоначально переработка выполнялась исключительно для извлечения плутония для производства ядерного оружия. С коммерциализацией атомной энергетики отработанный плутоний перерабатывают обратно в смешанный оксид ядерного топлива для тепловых реакторов. Переработанный уран, который составляет большую часть отработанного топливного материала, в принципе, может также быть повторно использован в качестве топлива, но это экономически оправданно, только когда цены на уран высоки или его утилизация является дорогостоящей. И, наконец, реактор-размножитель может использовать не только переработанный плутоний и уран в отработанном топливе, но все актиниды, завершая ядерный топливный цикл и потенциально умножая энергию, извлеченную из природного урана более чем в 60 раз.

Переработка ядерного топлива уменьшает объем высокорадиоактивных отходов, но сама по себе не уменьшает радиоактивность или выделение тепла и, следовательно, не устраняет необходимость в хранении отходов в геологических формациях. Переработка вызывает политические споры из-за возможности способствовать распространению ядерного оружия, потенциальной уязвимости к ядерному терроризму, политических проблем выбора площадки для хранилища (проблема, которая в равной степени относится к прямой утилизации отработавшего ядерного топлива), а также из-за ее высокой стоимости по сравнению с однократным топливным циклом. В Соединенных Штатах Америки администрация Обамы отступила от планов президента Буша на переработку в промышленных масштабах и вернулась к программе, ориентированной на переработку, связанную с научными исследованиями.

Аварии на атомных электростанциях

Венская Конвенция о Гражданской Ответственности за Ядерный Ущерб установила международные рамки ядерной ответственности. Однако государства с большинством атомных электростанций в мире, в том числе США, Россия, Китай и Япония, не являются участниками международных конвенций по ядерной ответственности.

В США страхование ядерных или радиационных инцидентов покрывается (для объектов, имеющих лицензию до 2025 года) в соответствии с Законом Прайса-Андерсона о Гарантиях Ядерной Промышленности.

В соответствии с Энергетической политикой Соединенного Королевства посредством Закона о Ядерных Установках 1965 года регулируется ответственность за ядерный ущерб, за который несет ответственность британский владелец лицензии на ядерную энергетику. Закон требует, чтобы ответственный оператор выплатил компенсацию ущерба в пределах 150 миллионов фунтов стерлингов в течение десяти лет после инцидента. Через десять лет в течение последующих двадцати лет правительство несет ответственность за данное обязательство. Правительство также несет ответственность за дополнительное ограниченное межгосударственное обязательство (около 300 миллионов фунтов стерлингов) в рамках международных конвенций (Парижской Конвенции об Ответственности Перед Третьей Стороной в Области Ядерной Энергетики и Брюссельской Конвенции дополнительно к Парижской Конвенции).

Вывод АЭС из эксплуатации

Вывод из эксплуатации ядерных объектов представляет собой демонтаж атомной электростанции и дезактивацию участка до состояния, не представляющего радиационную опасность для гражданского населения. Основным отличием от демонтажа других видов электростанций является наличие радиоактивного материала, вывоз и перемещение которого в хранилище отходов требует соблюдения специальных мер предосторожности.

Вообще говоря, атомные станции были спроектированы с учетом срока службы около 30 лет. Новые станции спроектированы с эксплуатационным ресурсом от 40 до 60 лет. Одним из факторов износа является ухудшение состояния экрана реакторов под действием нейтронного облучения.

Вывод из эксплуатации включает в себя множество административных и технических мер. Он включает в себя полную очистку радиоактивности и абсолютный снос станции. После того как объект выведен из эксплуатации он не должен больше представлять никакой опасности радиоактивной аварии или быть опасным для здоровья его посетителей. После полного выведения объекта из эксплуатации он освобождается от регулирующего контроля, а лицензиат станции больше не несет ответственность за ее ядерную безопасность.

Исторические происшествия на АЭС

Атомная промышленность утверждает, что новые технологии и контроль сделали атомные станции ​​гораздо безопаснее, но после катастрофы на Чернобыльской АЭС в 1986 году и до 2008 года произошли 57 небольших аварий, две трети из которых произошли в США. Французское Агентство по Атомной Энергии (CEA) пришло к выводу, что технические инновации не могут полностью исключить риск человеческого фактора в работе атомной станции.

По словам Бенджамина Совакоола в 2003 году междисциплинарная команда Массачусетского технологического института (MIT) подсчитала, что с учетом ожидаемого роста ядерной энергетики в период с 2005 по 2055 годы можно ожидать, по крайней мере, четыре серьезные ядерные аварии. Однако исследование MIT не учитывает улучшения безопасности с 1970 года.

Преимущества атомной энергетики

Атомные станции используются в основном для базовой нагрузки из-за экономических соображений. Стоимость топлива для работы атомной электростанции меньше, чем стоимость топлива для эксплуатации угольных или газовых электростанций. Работа атомной станция не на полную мощность не является экономически оправданной.

Тем не менее, во Франции атомные станции работают преимущественно в режиме следования за нагрузкой, хотя "принято считать, что это не является идеальной экономической ситуацией для атомных станций." Блок A на АЭС Библис в Германии спроектирован с возможностью увеличения и уменьшения выработки электроэнергии на 15% в минуту от 40% до 100% его номинальной мощности. Реакторы с кипящей водой обычно имеют возможность следования за нагрузкой, осуществляемую за счет изменения потока рециркулируемой воды.

Проекты будущих электростанций

Новое поколение конструкций для атомных электростанций, известное как реакторы IV Поколения, является предметом активных исследований. Многие из этих новых проектов специально пытаются сделать реакторы ядерного деления чище, безопаснее и / или представляющими меньше рисков для распространения ядерного оружия. Могут быть построены пассивно безопасные станции (например, экономичный упрощённый ядерный реактор с кипящей водой), в то время как целью исследований является разработка реакторов почти с полным исключением влияния на них человеческого фактора. В термоядерных реакторах, которые еще находятся на ранних стадиях развития, уменьшены или устранены некоторые из рисков, связанные с ядерным делением.

Два Европейских реактора с водой под давлением (EPR) суммарной мощностью 1600 MВт строятся в Европе, и два строятся в Китае. Реакторы являются совместным проектом французской корпорации AREVA и немецкой Siemens AG и будут крупнейшими реакторами в мире. Один EPR находится в г. Олкилуото в Финляндии и является частью Олкилуото АЭС. Первоначально было запланировано запустить реактор в 2009 году, но запуск неоднократно откладывался, и по состоянию на сентябрь 2014 года был перенесен на 2018 год. Подготовительные работы для EPR на Фламанвильской АЭС в г. Фламанвиль, Манш во Франции были начаты в 2006 году с запланированной датой завершения в 2012 году. Запуск французского реактора также был задержан, и согласно прогнозам 2013 года его планировали запустить в 2016 году. Два китайских EPR являются частью Тайшанской АЭС в г. Тайшан, Гуандун. Запуск реакторов Тайшанской АЭС был запланирован на 2014 и 2015 годы, но был отложен до 2017 года.

По состоянию на март 2007 года семь атомных электростанций в Индии и пять в Китае находятся на стадии строительства.

В ноябре 2011 года компания Gulf Power заявила, что к концу 2012 года она надеется закончить покупку 4000 акров земли к северу от г. Пенсакола в штате Флорида, чтобы построить возможную атомную электростанцию.

В 2010 году Россия ввела в эксплуатацию плавучую атомную электростанцию. Судно Академик Ломоносова стоимостью 100 миллионов фунтов стерлингов является первой из семи станций, которые обеспечат отдаленные регионы России жизненно важными энергетическими ресурсами.

Не имея ни одной АЭС в 2011 году, к 2025 году страны Юго-Восточной Азии будут иметь в общей сложности 29 атомных электростанций: Индонезия будет иметь 4 атомные электростанции, Малайзия - 4, Таиланд - 5, а Вьетнам - 16.

В 2013 году в Китае на стадии строительства было 32 атомных реактора - наибольшее число в мире.

В период с 2016 по 2019 год планируется завершить расширение двух атомных электростанций в Соединенных Штатах Америки, а именно: АЭС Вогтль в Джорджии и АЭС Ви-Си Саммер в Южной Каролине. Два новых реактора на АЭС Вогтль и два новых реактора на АЭС Ви-Си Саммер являются первыми проектами строительства атомной электростанции в Соединенных Штатах Америки с момента аварии на АЭС Три-Майл-Айленд в 1979 году.

Правительство Великобритании одобрило строительство АЭС Хинкли-Пойнт C.

Несколько стран приступили к реализации ториевой ядерной программы. Торий встречается в природе в четыре раза чаще урана. Более 60% залежей руды тория - монацита - в находится в пяти странах: Австралии, США, Индии, Бразилии и Норвегии. Этих ториевых ресурсов достаточно для обеспечения текущих энергетических потребностей в течение тысяч лет. Ториевый топливный цикл способен генерировать атомную энергию с более низким выходом радиотоксичных отходов, чем урановый топливный цикл.